Sampling in Ice Clouds

Daniel Murphy NOAA Aeronomy Lab

also: D. Cziczo, P. Hudson, M. Schein, D. Thomson CRYSTAL-FACE Workshop 2003

The problem:

When it bounces, ice can "sandblast", shatter, acquire coating,

Sticking is unlikely for velocity $> 1 \text{ m s}^{-1}$.

It can't completely melt! (insufficient kinetic energy)

Many (10 ??) bounces possible.

Length and time scales (spherical ice, 190 m s⁻¹, 120 mbar)

Diameter (µm)	L _{stop} (cm)	tan ⁻¹ (5mm/L _{stop}) (degrees)	(Grav. fall speed) x (evap. time @ 20°C)
5	1.3	21	25 μm
25	14	2	1.3 cm
100	90	0.3	3 m

 \approx inlet alignment requirement. B57 pitch varies by \sim 3° in "level" flight

- Large cirrus crystals have moderate Reynolds numbers at aircraft velocity (calculations here include a 1st order correction)
- (L_{stop} approx. linear in v, less than linear in air density)

PALMS inlet designs

Even fairly large ice crystals should be aligned with duct

Counterflow Virtual Impactor (CVI) design

based on Laucks and Twohy with shorter frit, slightly smaller diameter

Laucks, M. L., and C. H. Twohy, Aerosol Sci. Technol., 28, 40, 1998.

Variations:

Frequency of metal particles

Excludes 709: intermittent CAPS detection of thin cloud, 711-719: PALMS noise affected rates

Size of metal particles

Size is smaller than grain size of steel => uniformity?

Dust also creates stainless steel particles

Mass spectra of these metal particles are similar to metal particles from ice clouds.

- PALMS flew in a wing pod on the NOAA P3 in spring 2002
- The same inlet hardware as on the B57 in CRYSTAL-FACE (shroud, duct, CVI inlet)

Previously deposited particles:

More wall effects: tin

Hypothesis: Inlet was clean during WAM, contaminated with Sn during ACCENT (by soldering near inlet)

Previous and future PALMS data?

- *Papers* use data from out of cloud and clean WAM inlet => should be no significant problems
- Some possibly good data will be lost:
 - real metal particles in clouds
- We think we still have good data with uncontaminated particles during CRYSTAL/FACE (-> Cziczo talk)

Other Groups (my comments)

Heintzenberg et al., 1996: CVI, Electron microscope analysis cirrus clouds

~75% residues had high Fe content explained as crustal, *although only 25% also had Si*

Petzold et al., 1998: CVI, Electron microscope analysis Falcon, both cirrus clouds and contrails residues < 1 µm mostly black carbon residues > 1.5 µm mostly stainless steel

contrail: ≥ 50% of mass in metals, attributed to engine wear

ratio to black carbon would imply order 1 ton/yr engine wear

Noone, K. B., K. H. Noone, J. Heintzenberg, J. Ström, and J. A. Ogren, *J. Atmos. Oceanic Technol.*, **10**, 294, 1993 J. Heintzenberg, K. Okada, and J. Ström, *Atmos. Res.*, **41**, 81, 1996, Petzold, A., J. Ström, S. Ohlsson, and F. P. Schröder, *Atmos. Res.*, **49**, 21, 1998.

Twohy and Gandrud 1998: CVI, electron microscope DC8, contrails

- "Metals" 12 36% of residues, typical size 0.4 μm
- "Minerals" 30 50% of residues, typical size 0.9 μm Fe particles classified as "mineral"

Twohy, C. H., and B. W. Gandrud, Geophys. Res. Lett., 25, 1359, 1998.

Other measurements:

- *Everybody* with a CVI has seen metals at significant rates (≥ 10%) but usually less than PALMS (90%).
- Higher rate for PALMS not understood PALMS more sensitive to metals? Subtle design differences (e.g. shorter frit)? Sampling efficiency for different sizes?
- Two CRYSTAL-FACE experiments: DU/Arizona State: frequent zinc in ice clouds CVI on Citation
 - -> See their presentations

Fast response data are helpful:

Suppose: 3 steel particles were found in a 15 minute filter sample near California coast and shipping lanes?

Could the metal particles be real?

Pro:

- Sheridan et al. found order 1% metal particles in upper trop.
- Metal particles can be good ice nuclei.

Could the metal particles be real?

Con:

- Requires a large source of metals to free troposphere: 1 per liter, 0.5 μm, Northern Hemisphere, 2 week lifetime => 13000 tons/year
- Why stainless steel? (found by both PALMS and Ström et al.)

• Proportion of metal particles stays high even above 1 cm⁻³ ice

Are the metal particles inlet contamination?

Pro:

• Unambiguous correlations of metals with presence of ice or dust.

Con:

• Metals don't always match inlet composition.

Notes:

- Chlorine? Involved in corrosion of stainless steel.
- Shouldn't the entire front of the airplane be eroded? *Probably not easy to observe:* $100 \, l^{-1}$ ice, abrade $0.5 \, \mu m$ chunks => $1 \, \mu m$ in $100 \, hrs$ in cirrus

Summary

- On a high speed aircraft, ice crystals larger than about 25 μ m will hit the wall of an inlet, either due to inertia or gravity.
- Published aircraft data on cirrus/contrail ice residues have found substantial numbers (>10%) of metal particles. They cannot be distinguished by size alone.
- Ice crystals can knock pre-existing particles off the wall of an inlet. Ice crystals appear to be able to abrade stainless steel.
- Some real metal particles are possible. However, to explain published CVI data the global flux would be very substantial.
- Abrasion/shattering may be frequent enough to affect data on ice number, especially if knocking older particles off the wall. Water content should be OK.

Suggestions:

- Lab experiments on ice particles hitting steel
- Gold plate the inlet for a unique signature
- Fly in the Southern Hemisphere for less industrial influence.
- Explore "shadowed" forward-facing inlets to exclude the largest particles that always hit a wall. (e.g. different version of ER2 football)

Can ice knock particles off an inlet wall?

Energetics of wall collisions:

- •Larger (e.g. cirrus) particles stick only at $< 1 \text{ m s}^{-1}$
- •Many (~10) bounces energetically feasible
- •100 m s⁻¹ collision has more energy than 100 story drop

Dahneke, B., *Aerosol Sci. Technol.*, **23**, 25, 1996. Sugi, N., M Arakawa, M. Kouchi, and N. Maeno, *Geophys. Res. Lett.*, **2**5, 837, 1998.